二极管激光微分光谱技术和 CH₃CN 分子 レ₄ 带的研究

杨学明 朱清时 沈之烨 张存浩 (中国科学院大连化学物理研究所)

提要:报道了 OH₃ON 分子 v₄ 带二极管激光微分光谱,观察到 v₄ 带约 120 条谱 线。利用改进的最小二乘方拟合方法得到了新的分子常数。

Diode laser derivative spectroscopic technique and study of CH₃CN ν_4 band

Yang Xueming, Zhu Qingshi, Shen Zhiye, Zhang Cunhao

(Dalian Institute of Chemical Physics, Academia Sinica)

Abstract: Diode laser derivative spectroscopy of $CH_3 CN \nu_4$ band is reported here for the first time. About 120 lines of ν_4 band of the molecule were recorded by means of the second order derivative spectroscopic technique. With an improved least square fitting technique, improved parameters of ν_4 band were obtained. And some properties of diode derivative spectroscopic technique were discussed.

류 言

 $CH_3CN 分子的红外振转光谱已有大量的研究,但是分辨率都比较低¹¹¹。这里报告了用比常规线性吸收光谱方法更为优越的二阶 微分吸收光谱方法,对 <math>CH_3CN 分子的 \nu_4(A_1)$ 带进行研究的结果,并讨论了微分光谱的一些特性。

、实验方法

二极管激光微分光谱技术是基于用电流

来调谐二极管激光而建立的。常规吸收光谱的信号强度是

 $I(v) = I_0(v) \exp(-nl\sigma(v))$ (1) 其中 $I_0(v)$ 是入射激光束强度, n 是样品分子 数密度, l 是吸收程, $\sigma(v)$ 是样品分子的吸 收截面。一般情况下 $nl\sigma \ll 1$, 因此 I(v)可写 成下面的形式:

$$I(\nu) = I_0(\nu) (1 - nl\sigma(\nu))$$
 (2)

因为上式中的 *l*(*ν*)与σ(*ν*)成线性关系,因此 常规吸收光程又称为线性吸收光谱。从上面 的讨论可以看出,常规吸收光谱探测的是吸 收截面的变化。

收稿日期: 1985年2月6日。

二极管激光器是用电流驱动的,因此只 要在计算机控制的电流慢扫描上加上一个频 率为 Ω 的快速小电流信号就可以达到激光频 率的调制。因为快速电流调制幅度很小,激 光频率的变化可以看成与电流成线性关系。 假设 v_0 是慢扫描变化的激光频率,那么调制 后的频率为 $v=v_0+af(\Omega, t)$,其中 $f(\Omega, t)$ 是频率为 Ω 的调制电流波形, a 是调制系数。 于是得到的光信号强度是:

$$I(\nu) = I(\nu_0 + af(\Omega, t))$$

= $I_0(\nu_0 + af(\Omega, t))$
 $\times [1 - nI_{\Omega}(\nu_0 + af(\Omega, t))] (2)$

由于被调制的信号的振幅比激光强度小得 多,因此把 $I_0(\nu_0 + af(\Omega, t))$ 近似当作 $I_0(\nu_0)$, 则有:

$$I_{0}(\nu_{0}+af(\Omega, t)) \approx I_{0}(\nu_{0})$$

將(3)式中的 $\sigma(\nu)$ 在 ν_{0} 点附近展开得:
$$I(\nu) = I_{0}(\nu_{0}) \left[1-nl\sigma(\nu_{0})-nl\frac{d\sigma(\nu)}{d\nu}\right]_{\nu_{0}}$$

$$\times a \cdot f(\Omega, t) - \frac{1}{2}nl\frac{d^{2}\sigma(\nu)}{d\nu^{2}}\Big|_{\nu_{0}}$$

$$\times a^{2} \cdot f^{2}(\Omega, t) + \dots \right]$$
(4)

如果用正弦波调制,那么 $f(\Omega, t) = \sin \Omega t$,且 忽略 $I(\nu)$ 中高于二次的项,得:

$$I(\nu) = I_0(\nu_0) \left[1 - n l \sigma(\nu_0) - a n l \left. \frac{d \sigma(\nu)}{d\nu} \right|_{\nu_0} \\ \times \sin \Omega t - \frac{1}{4} a^2 n l \left. \frac{d^2 \sigma(\nu)}{d\nu^2} \right|_{\nu_0} \\ \times (1 - \cos 2\Omega t) \right]$$
(5)

从上式我们可以看出,只要有选择地探测不同频率的信号,就可得到不同阶的微分吸收 光谱。

CH₃CN 样品是商品化的,低分辨的红外 光谱分析没有发现样品中有明显的杂质。 ν₄ 带的二阶微分光谱是在 US-3 型激光光谱仪 上扫出的,具体装置见图 1。所使用的两个 二极管激光器工作在 880~1000 cm⁻¹ 之间, 扫出的 ν₄ 带光谱范围是 891~938 cm⁻¹,吸 收程达 12 m,样品压强是 1 Torr 左右。所用 绝对波长是 NH₃ 分子的 ν₂ 带⁽²¹⁾(精度不低于

1×10⁻⁴cm⁻¹)。所用相对波长标准是一个自 由光谱程为 0.0478 cm⁻¹ 的锗标准具。在实 验过程中,由于受仪器本身的限制,所用的快 速电流信号是三角波形的,但没有发现谱线 形状有明显的改变,这是由于在小振幅下三 角波是正弦波的很好近似。调制频率 Q 以 1000~2000 Hz 为最佳。调制的电压幅度一 般为几个 mV 为好。

三、结 果

利用上面所叙述的实验方法,我们观察 到了 ν_4 带的100多条谱线[图2(c)是一部分], 分辨了在FT-IR光谱中未能分辨的K结构。对每一条J线的归属与我们的FT-IR

图 2 v₄带微分二极管光谱与 FT-IR 光谱 (a) 普通 IR⁽¹⁾; (b) 我们的 FT-IR; (c) 微分光谱

表1 v4带分子常数表^{a)} 单位: cm⁻¹

条置多	本工作	我们的FT-IR	I. Naka- gawa, etc.
vo	920.27696(79)	920.2699(86)	920.25
B_4	0.305560(15)	0.30504(8)	0.3052
$\boldsymbol{\alpha}_4^B$	-0.001505(2)	-0.00159(7)	-0.0016
α_4^A	-0.00734(6)	$M h m^{q} D'_{q} = 2h$	· · · · · · · · · · · · · · · · · · ·
D_4^{J}	$1.552(15) \times 10^{-7}$	-1.38×10^{-8}	15-8
$D_4^{r_k}$	$5.744(46) \times 10^{-6}$	1.99×10^{-8}	11-1
$D_4^{\it K}$	$9.90(10) \times 10^{-5}$		

a) D^J_e常数(基态)引自文献D. Boucher; J. M. Spectrosc. **64**, 290(1977)。

De 常数引自 J. L. Duncan; J. M. Spectrosc. 69, 123(1978)。

表 2 24 带谱线实验值与计算值比较

L. CARL	RIGHAS	15 11.5	RUN APRIL	E JANG	- X 3 4 4
Branch	J	K	OBS- ν (cm ⁻¹)	CAL- ν (cm ⁻¹)	O-C ×10 ^{\$} (cm ⁻¹)
QR	31	0	938.2687	938.2690	-0.3
下腰船	题序	1	2628	2632	-0.4
304 - 111	n zelu - de	2	2454	2459	-0.5
BR CT-	- all and	3	2146	2168 ,	-2.2
04	12 M	4	1737	1758	-2.1
IRI-	TM B	5	1206	1224	-1.8
19 1. 18	mit	6	0546	0562	-1.6
	An Art	7	937.9765	937.9766	-0.1
1 尚当	30	0	7615	7584	3.0
了近街	战 進	1	7554	7527	2.6
1	a const	2	7360	7354	0.6
Carls	WAY WAYNA	3	7064	7063	0.1
÷ .:	1. 20	4	6656	6652	0.4
		5	6074	6117	-4.3
	29	0	2453	2444	0.9
		1	2395	2386	0.9
		2	2219	2212	0.7
、图图		3	1926	1920	0.6
·在m 起	To Test	4	1531	1509	2.2
49	题 品	5	0989	0974	1.5
	121.2.4	6	0320	0310	1.0
	23	0	934.0866	934,0863	0.3
	Fit of	1	0773	0804	-3.1
	42 093	2	0621	0630	-0.9
	and port of	3	0325	0336	-1.1
	2.4月7	4	933.9909	933.9923	-1.4
	音音音	5	9372	9384	-1.2
8-87	38 95	6	8701	8717	-1.6
点在神	神代	7	7986	7915	7.0

Branch	J	K	OBS-v (cm ⁻¹)	$\begin{array}{c} \mathrm{CAL-}\nu\\ \mathrm{(cm^{-1})}\end{array}$	$O-C \times 10^{3} (cm^{-1})$
OR	17	0	020 8101	020 2069	. 3.0
Q.I.	11	1	950.0101	950.8004	0.9
2.8	Ler	1	7070	7000	5.0
12131	E Loop	2	7595	7524	5.0
120	-19 TSIRT	D	7175	7110	5.6
	Lass	4	6619	6570	0.0
	Erre	0	6100	0018	0.0
	16	0	2428	2480	-5.2
	1 TIM	1	2369	2422	-5.3
	1 2.7.2	2	2210	2246	-3.6
	0000	3	1932	1952	-2.0
	- And	4	1537	1537	0.0
1 7 0 2	13 212N	5	0952	0996	-4.4
	15	0	929.6876	929.6867	Q.9
5.0	0.55	1	6814	6808	. 0.8
1.62	· barie	2	6639	6632	0.0
rata	Lan	. 3	6332	6338	0.7
27.227 J	- 15-24-3 	4	5907	5922	-1.5
hore Bal	- the	5	5362	5381	-1.9
3.0-	TRA	6	4720	4711	0.9
AND	1946	7	3873	3905	-3.2
2.0	14	0	1178	1220	-4.2
o's GET	1 Sold	1	1116	1161	-4.5
estén part	- out	2	0953	0986	-3.3
A BI AND	the best	3	0662	0691	-2.9
. h. F	Tare	4	0274	0275	0.1
6 2	- Carlo	5	928.9748	928.9735	1.3
		6	9103	9064	3.9
. 6.1	logo	7	8250	8258	-0.8
Freih	21	0	933.0074	933.0663	1.1
1 s m	all all h	1	932,9984	933.0004	-2.0
	Entra	2	9816	9829	-1.3
	Tan	3	9526	9535	-0.9
1 AL	127	4	9117	9121	-0.4
	1 100	5	8584	8582	0.2
Notes	640	6	7909	7913	-0.4
147-0-	20	0	4605	4612	-0.7
0.8	eno	1	4551	4553	-0.2
0.0	1 508	2	4378	4378	0.0
Besh H	the first	3	4084	4084	0.0
	1 maria	4	3668	3670	-0.2
	3.80	5	3133	3130	0.3
1917 12	11 2270	6	2473	2462	1.1
	(histo)	7	1613	1658	-4.5
	tu spe	The state	2.15 6.13.3		

(续)

. 353 .

Some La	100		1	Section Section	
Branch	J	K	$\begin{array}{c} \text{OBS-}\nu\\ (\text{cm}^{-1}) \end{array}$	CAL- <i>p</i> (cm ⁻¹)	$O-C \times 10^{3} (cm^{-1})$
ot	10		021 0150	0100	2.0
QL .	19	0	931.9108	9128	3.0
ふたし	100	1	9101	9070	3.1
0.6	828	2	8932	8894	3.8
加限等	(\$820)	3	8635	8601	3.4
见影响	995	4	8229	8186	4.3
A.C. al	174	5	7686	7646	4.0
5.8-1	8480	6	7001	6977	2.3
1.5-1-5	1125	17 0	6184	6172	1.2
0.8-	18	0	931.3601	931.3611	1.0
0.8-14	952	1	3535	3553	-1.8
0.0.	NO.	2	3376	3378	-0.2
重要	bege	3	3059	3084	-2.5
de tin de	Minin	4	2643	2668	-2.5
and the	1200	5	2128	2128	0.0
場。原計	1000	6	1466	1459	0.7
	\$.01	7	0638	0654	-1.6
QP	6	0	916.5481	916.5472	0.9
0.14	12256	1	5419	5415	0.4
2601	1 de la	2	5241	5240	0.1
- Will	LEY	3	4942	4947	-0.5
2.0-	doe	4	4522	4534	-1.2
4.2	7	0	915,9154	915,9151	0.3
2,2-1	rà.t	1	9102	9094	0.8
6-8-1-1-	889	2	8942	8919	2.3
· 18.24	163	3	8673	8628	4.5
1.6	315	4	8201	8215	-1.4
. K.J	7235	5	7656	7678	-2.2
2.8	24	0	004 7160	004 7147	1 3
8.0-	258	1	7108	7000	1.0
411	on an	1	6092	6091	1.0
10.8-11	Anna	2	6620	6696	0.2
	nem	9	0056	0050	0.2
- 0	30	0	900.5535	900.5540	-0.5
19-1-1-	1	1	5478	5485	-0.7
10 20	and the	2	5310	5317	-0.7
200	S F.D	3	5012	5037	-2.5
and the first	1000	4	4640	4640	0.0
新治古林	222	5	4118	4125	-0.7
	42	0	891.8955	891.8953	0.2
1 0:0	1376	1	8899	. 8899	0.0
070 11 12	1084	2	8736	8738	-0.2
Sin Hall	0785	3	8465	8467	-0.2
8.051	1120	4	8087	8084	0.3
I.I.	en pres	5	7595	7586	0.9
- 4.4 P	8365	6	6975	6968	0.7
1	13	NP-	L	Con Fasin	

.354.

工作相一致。而每一J线中的K结构,可 根据统计权重来判定。对这一百多条谱线 (QR,QP线)使用了平行谱带跃迁公式:

$=\nu_0 + m(B' + B'') + m^2(B')$	-B'')
$+K^{2}[(A'-A'')-(B'-A'')]$	B'')]
$+4m^{2}D_{e}^{J}-2mK^{2}D_{e}^{JK}$	
$-m^4(D'_J-D''_J)-m^2K^2(.$	$D'_{JK} - D''_{JK}$
$-K^4(D'_K-D''_K)$	(6)

和我们自己编写的 CBasic 最小二乘方 拟合 程序在 Altos 68000 计算机上进行了计算。 在计算过程中当正规矩阵中元素之间存在大 数量级差别时,计算所得的结果往往会出现 很大的误差,有时甚至程序无法运行。为了 克服这一困难,我们在计算过程中对最小二 乘方计算作了改进,使模型中的每一项都根 据各自的常数的量级加一权重,使矩阵计算 不再出现上述情况,拟合后再返回求真正的 常数。这样做使最小二乘方方法程序得到了 明显的优化。算得的分子常数列在表1中,谱 线的计算值和实验值的比较列在表2中。

从表1中可以看出,与我们的 FT-IR 工作相比,新得到两个常数 α_1^4 和 D_4^{κ} 。带心比原有值提高1个量级, B_4 和 α_4^{α} 常数提高了1~2个量级,另外 $D_4'^{\kappa}$ 和 D_4' 常数也得到了明显的改进。

四、讨 论

微分光谱有许多优越之处。

由于微分光谱对谱线变化率的敏感性, 微分光谱能把线性光谱中两个几乎叠在一起 的峰很明显地分开,分辨率有明显提高。线 性吸收光谱(对二极管激光器来说)的分辨率 在多普勒极限,对于 CH₃CN 分子 v₄ 带一般 是 0.002 cm⁻¹ 左右,而微分光谱的分辨则略 高于它。但是分开的谱线的频率会稍有移动, 引起误差。另外单从二阶微分光谱谱线的中 间峰来考虑,线宽要比原谱线线宽窄 2~3 倍,因此测量精度可以提高。这种优点在样 品压力较高的情况下尤为明显。对较弱的吸 收带,由于测量时往往要加更多的样品使得 样品压力增大,压力加宽效应显著。这时,微 分光谱的测量精度要比线性吸收光谱高。

当激光器工作良好,光谱本身又不太密的情况下,二阶微分光谱的谱线相对强度分 布与一般吸收光谱的是一致的。在多普勒展 宽情况占优势的情况下,谱线形状是呈高斯 型的,即:

 $I(\omega) = I_0 \exp[-(\omega - \omega_0)^2/B]$ (7) B 是与分子质量及温度等有关的常数。当 $\omega = \omega_0, I = I_0$ 。而微分光谱的信号强度是:

$$\frac{d^2I}{d\omega^2} = -\frac{2I_0}{B} e^{-(\omega-\omega_0)^3/B} + \frac{4I_0}{B} (\omega-\omega_0)^2 e^{-(\omega-\omega_0^2)/B}, \quad (8)$$

当 $\omega = \omega_0$ 时:

$$\frac{d^2I}{d\omega^2}\Big|_{\omega_0} = -\frac{2I_0}{B}$$

因此二阶微分光谱的谱线强度是与线性光谱 的一致的,但信号符号正好反向。当有两条 谱线重叠时,分开的谱线的相对强度不再遵 循原来的规律。在这种情况下给归属和辨认 带来了很大的困难。

此外我们在做 v₄ 带光谱时是 用 单 光 路 扫出的,因此信号强度还与 *I*₀(v)因子有关, 在某些情况下相对强度规律无法体现,给归

(上接第375页)

本机采用 Z80 CPU, 时钟频率1.9968 MHz, 4K 字节 EPROM, 1K 字节 RAM。 还配有必要的译码器、锁存器驱动器等。

输入键盘有 10 个数字链, 2 个符号键, 6 个功能键。输出显示器为五个七段 LED 显 示器。由软件实现 0~9 十个十进制数码和一 些特定符号"-"、"P"等的显示。

(2) 软件部分

软件部分包括监检程序和计算程序,监 检程序流程图如图 5。

属带来了一定的麻烦。改进此方法的最佳途 径是利用双光路^[3]。

我们还发现一个很有趣的现象,当调制 频率 Ω 增加时(其它条件不变),信号随 Ω 增 大而下降(如图 3),我们认为其原因在于:激 光频率是由于电流变化引起温度变化来调谐 的,而当调制频率 Ω 很大时,温度的变化跟 不上调制电流变化的频率,因此调谐系数 α 就变小。

参考文献

- [1] Nakagawa I., Shimanouchi T.; Spectrochim. Acta, 1962, 18, 513~539.
- [2] Papousek D. et al.; J. Mol. Spectrosc., 1983,101, No. 1.
- [3] Pokrowsky D., Herrmann W.; Proceedings of SPIE, The International Society for Optical Engineering, 1981, 286, Washington, D. C. pp 33.

本方法不适用于无知幼儿和器质性病变 的测定。

参考文献

- V. Mohon, A. Rodemann; Appl. Opt., 1973, 12, 783.
- [2] T. Asakura, N. Takai; Appl. Phys., 1981, 25,179.
- [3] H. Ohzu; Opt. Acta, 1979, 26, No. 8, 1089.
- [4] 石锦辉等; 《安徽医学院学报》, 1984, 19, No. 2,
- [5] D. Malacara; Am. J. Optom. and Physiol., 1974, 51, 15.
- [6] 刘家军等; 《安徽工学院学报》, 1985, No. 1.